首页> 外文OA文献 >IrisSeg : A Fast and Robust Iris Segmentation Framework for Non-Ideal Iris Images
【2h】

IrisSeg : A Fast and Robust Iris Segmentation Framework for Non-Ideal Iris Images

机译:IrisSeg:用于非理想虹膜图像的快速,强大的虹膜分割框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a state-of-the-art iris segmentation framework specifically for non-ideal irises. The framework adopts coarse-to-fine strategy to localize different boundaries. In the approach, pupil is coarsely detected using an iterative search method exploiting dynamic thresholding and multiple local cues. The limbic boundary is first approximated in polar space using adaptive filters and then refined in Cartesianspace. The framework is quite robust and unlike the previously reported works, does notrequire tuning of parameters for different databases. The segmentation accuracy (SA) is evaluated using well known measures; precision, recall and F-measure, using the publicly available ground truth data for challenging iris databases; CASIAV4-Interval, ND-IRIS-0405, and IITD. In addition, the approach is also evaluated on highly challenging periocular images of FOCS database. The validity of proposed framework is also ascertained by providing comprehensive comparisons with classical approaches as well asstate-of-the-art methods such as; CAHT, WAHET, IFFP, GST and Osiris v4.1. The results demonstrate that our approach provides significant improvements in segmentation accuracy as well as in recognition performance that too with lower computational complexity.
机译:本文介绍了专门针对非理想虹膜的最新虹膜分割框架。该框架采用从粗到精的策略来定位不同的边界。在该方法中,使用迭代搜索方法利用动态阈值和多个局部提示来粗略地检测瞳孔。首先使用自适应滤波器在极坐标空间中近似边缘边界,然后在笛卡尔空间中对其进行细化。该框架非常健壮,并且与以前报道的工作不同,它不需要为不同的数据库调整参数。分割精度(SA)使用众所周知的方法进行评估;精确度,召回率和F量度,使用公开可用的地面真实数据来挑战虹膜数据库; CASIAV4-Interval,ND-IRIS-0405和IITD。此外,该方法还在FOCS数据库的高挑战性眼周图像上进行了评估。还可以通过与经典方法以及最新方法(例如)进行全面比较来确定所提出框架的有效性。 CAHT,WAHET,IFFP,GST和Osiris v4.1。结果表明,我们的方法在分割准确度和识别性能方面都显着提高了,而且计算复杂度也较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号